Universal tangle invariant and commutants of quantum algebras

نویسنده

  • H C Lee
چکیده

We construct a universal tangle invariant on a quantum algebra. We show that the invariant maps tangle to commutants of the algebra; every (1, 1)-tangle is mapped to a Casimir operator of the algebra; the eigenvalue of the Casimir operator in an irreducible representation of the algebra is a link polynomial for the closure of the tangle. This result is applied to a discussion of the Alexander–Conway polynomial and quantum holonomy in Chern–Simons theory in three dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutators Associated to a Subfactor and Its Relative Commutants

A central problem in subfactor theory is the classification of inclusions of II1 factors, N ⊆M . An important invariant for such an inclusion is the lattice of higher relative commutants, {M ′ i ∩Mj}i,j , known as the standard invariant, contained in the Jones tower N ⊆ M ⊆ M1 · · ·. There are several approaches to studying the standard invariant, namely paragroups [3], λ-lattices [8], and plan...

متن کامل

INCLUSIONS OF VON NEUMANN ALGEBRAS, AND QUANTUM GROUPOÿIDS II

In a former article, in collaboration with Jean-Michel Vallin, we have constructed two ”quantum groupoÿıds” dual to each other, from a depth 2 inclusion of von Neumann algebras M0 ⊂ M1. We are now investigating in greater details these structures : in the previous article, we had constructed the analog of a co-product, and in this paper, are defined a co-inverse, by making the polar decompositi...

متن کامل

The witness set of coexistence of quantum effects and its preservers

One of unsolved problems in quantum measurement theory is to characterize coexistence of quantum effects. In this paper, applying positive operator matrix theory, we give a mathematical characterization of the witness set of coexistence of quantum effects and obtain a series of properties of coexistence. We also devote to characterizing bijective morphisms on quantum effects leaving the witness...

متن کامل

Gorensteinness of Invariant Subrings of Quantum Algebras

We prove Auslander-Gorenstein and GKdim-Macaulay properties for certain invariant subrings of some quantum algebras, the Weyl algebras, and the universal enveloping algebras of finite dimensional Lie algebras.

متن کامل

Extensions of the Tensor Algebra and Their Applications

This article presents a natural extension of the tensor algebra. This extended algebra is based on a vector space as the ordinary tensor algebra is. In addition to “left multiplications” by vectors, we can consider “derivations” by covectors as fundamental operators on this algebra. These two types of operators satisfy an analogue of the canonical commutation relations, and we can regard the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996